
Top-level Task Callbacks in R

Duncan Temple Lang

December 2, 2001

This is an early version of a description of the new callback mechanism that is invoked at the successful
completion of each top-level task.

The basic idea here is that we want to allow R functions and C routines to be automatically invoked at the end of
eachtop-level expression. The end of the expression evaluation is an “event” and we can use it to do numerous things.
For example,

saving state A question on R-news recently asked how one might arrange to have a call tosave.image()periodically
invoked to reduce the potential for data loss if a crash were to occur subsequently. Rather than being based
on time and the current semantics of the event loop, it makes more sense to callsave.image()at the end of a
top-level task. This avoids intermediate computations, calling from within other contexts, etc. and generally has
more obvious and meaningful semantics. We can even examine the expression and determine if any assignments
were made.

validation The methods package introduces the need to validate the contents and structure of objects relative to the
definition of the their declared class(es). This can be done when a top-level assignment occurs and can be
performed at the end of that task.

auditing The S-style auditing mechanism could be implemented optionally by an extension which catches each top-
level task and stores the appropriate information.

transactions One can treat successful top-level tasks as “transactions” in the relational database sense and propagate
changes caused by the expression when it has completed. For example, one can update spreadsheets, commit
assignments to tables in remote databases, etc.

display updates One can output the user input and result to different rendering engines such as ESS, XML/HTML
browsers, a different console for collaborative sessions, an object browser, search path GUI, etc. Again this is an
optional extension that is customizable by the user rather than being one of a fixed set of options implemented
internally.

This idea of invoking callbacks at the end of each top-level task has been used in the Omegahat interpreter since its
inception and promotes a more modular and extensible mechanism for controlling the user’s environment. It provides
a reasonably easy way to customize the Read-Eval-Print loop (REPL).

We provide an extensible mechanism for calling a collection of C routines and R functions after each top-level task
is completed. We describe this interface below.

1 The Interface

The basic interface allows one to register a C routine to be invoked at the end of each top-level task. Those program-
ming at the C-level can use this directly. Most people however will use the R-level interface and register R functions
instead of C routines. A third level allows one to register a single R function with the C-level code and have it act as
the manager or dispatcher for the real R functions to be invoked. We will first describe the basic R interface which
registers R functions directly with the C code.

1

1.1 The R Interface

There are two basic functions with which one can add and remove R functions which are to be used as task callbacks
that are to be invoked at the end of each top-level expression evaluation. These areaddTaskCallback()for registering
a handler, andremoveTaskCallback()for removing one.

addTaskCallback()takes a function that is to be called after each top-level task has been completed in the R session.
By default, the function is called with4 arguments:

expression the S-language expression for the top-level task.

value the result of evaluating the expression for top-level task.

status a logical value indicating whether the evaluation was successful. In the future, this may be used to indicate
whether the handler has been called in the case of an error or not.

visible whether the output from the task was printed or not.

Therefore, each function that is used as a task callback must accept at least four arguments.
Closures provide a convenient way to create a function that has access to any additional data that it needs. For

example, suppose we want to keep a count of the number of times the callback has been invoked, we might define a
function that returns the actual callback function.

counter <-
function() {

ctr <- 0

function(expr, value, ok, visible) {
ctr <<- ctr + 1
cat("Count", ctr, "\n")
TRUE

}
}

Now, each time we call the functioncounter(), we get back a function that has its own independent count. And we can
pass that function toaddTaskCallback(), e.g.

addTaskCallback(counter())

In other cases, it is more convenient to not use closures but to have R call the function with an additional argument
that gives additional context. In these cases, we can supply a value for thedata argument ofaddTaskCallback()
function. This object is stored by the callback mechanism and is given as a fifth argument to the callback when it is
invoked. Theperiodic()function example below is an example of this approach.

Either of the closure or an additional-argument approaches works well. Closures are needed when we want to
change the value during the call and see those changes in subsequent calls. User-specified data is convenient when we
want a single, perhaps existing, function and just want to change it behaviour based on some additional data – the fifth
argument.

The final argument toaddTaskCallback()is optional and allows one to specify a name by which the callback can
be identified. This is stored with the callback and used when we query the list of registered callbacks. The function
getTaskCallbackNames()returns these names in the order the active callbacks were registered. Also, when we remove
a callback usingremoveTaskCallback(), we can give the name of the callback.

If no name is specified in the call toaddTaskCallback()call, we give it one. This default is the string whose
contents are the position in the list of this new callback.

1.2 The Return Value of a Callback

In the case of these callback functions, the return value has special significance. It must be a single logical value. If
the function returnsTRUE(), the callback is maintained in the list of callbacks and it will be invoked after the next task
is completed. If it isFALSE(), then the callback is removed from the list and won’t be called again by this mechanism.
This provides a convenient way to “retire” a callback, or more specifically, have it retire itself.

2

1.3 Registering Multiple Handlers

There is a slight issue if one wants to add multiple handlers and have them all registered before the first is called. This
shouldn’t be important and it is typically not good design to have handlers depend on each other. However, one could
use successive calls toaddHandler()and arrange for the handlers to check for some state to allow them to operate.
This is very clumsy. A simple way to do it is

for(i in list(periodic(), periodic())) {
addTaskCallback(i)

}

or

handlers <- list(list(function = periodic(), data = quote(print("ok"))),
list(function = periodic(), data = qote(print("now"))))

for(i in handlers) {
addTaskCallback(i[["function"]], i[["data"]])

}

In each case, the for-loop is considered as a single top-level task and so the callbacks will not be invoked until the loop
is completed and all of the handlers have been registered. It is pretty trivial to write a function to do this taking an
arbitrary number of function arguments and a list of user-level data.

However, there is a much simpler way to do this that uses R a single R function to manage the R-level callbacks.
That is the topic of the next (sub) section.

1.4 An R Handler Handler

One of the good tests of a model in an interpreted environment is whether a feature developed internally can then be
implemented in the interpreted language itself. In this particular case, it is quite simple and useful to implement task
callbacks in R itself. The reason it is useful is that we have more control over the list of handlers. We can index the
elements by name, deal with garbage collection more readily, etc. Of course we can implement such facilities in C, but
the details of linked lists, creating names, supporting optional names, adding features, etc. quickly make the software
more complex than is desirable to maintain. In S, however, such list creation and manipulation, indexing and so on is
trivial and trivially portable!

The functiontaskCallbackManager()is a function that can be used to create a manager which handles other
callbacks. It is a meta-callback.taskCallbackManager()returns a list of functions which share state via some variables
in their environment. This is a closure. The functions allow one toadd() andremove()functions to and from a list
of callbacks. When a top-level task is completed, the managers central callback (evaluate()) is called by the C-level
mechanism and this, in turn, evaluates each of the callbacks it manages.

Theadd()method provided by the manager is very similar toaddTaskCallback()but stores the callback in the R
manager. It takes a function and optionally adataargument which will be passed to the function when it is called after
a top-level task. One can also specify a name for the element. This allows us to update and replace existing functions
in the list of callbacks and also remove them by name rather than index.

We can show how thetaskCallbackManager()works with a simple example. Suppose we want to save the session
at the end of each top-level task to avoid any chance of losing data. We can define a simple task callback to do this
with the following code:

saveImage <-
function(expr, value, ok, visible)
{

cat("Saving the session\n")
save.image()
TRUE

}

We can then arrange to have this called at each top-level task usingtaskCallbackManager().

3

> h <- taskCallbackManager()
> h$add(saveImage, name = "autoSave")
[1] "saveImage"
Saving the session

We first create the callback manager and it contains no callbacks. Then we add thesaveImage()callback. This has the
side effect of arranging for the callback handler to become active. We can check this by looking at the names of the
C-level callback handlers usinggetTaskCallbackNames().

> getTaskCallbackNames()
[1] "R-taskCallbackManager"
Saving the session

Notice that callinggetTaskCallbackNames()caused the session to be saved, i.e. the callback to invoked. And other
top-level expressions will do the same.

> x <- 100
Saving the session
>

We can of course enhancesaveImage()to check whether the expression was an assignment and only save the session
if there are changes to the global environment.

We can now give a more detailed explanation of the properties oftaskCallbackManager(). Theadd()andremove()
functions merely manipulate contents of the list of callbacks. Theevaluate()is the one that does the work. This
function is a regular task callback and can be registered usingaddTaskCallback(). This is done automatically when
the first function is added to this R-level callback list via theadd() function. At the completion of each top-level task,
this evaluate()function is invoked. It then iterates over the elements in the list of callbacks and evaluates them in the
same way as the C-level dispatching does, i.e. passing them the same 4 arguments it was called with. Any user-level
dataargument given when registering the function is supplied as the fifth argument in the call to that handler.

Any handler that returnsF is dropped from the list.
One can use thecallbacks()function to look at the list of currently registered handlers. For example, we can

register two callbacks and then examine the list of callbacks.

h <- taskCallbackManager()
h$add(times(), register=FALSE)
h$add(times(6))
names(h$callbacks())

The times()function is shown below. It is a callback that prints an identifier. When it has been calledn times, it
removes itself from the list of callbacks. The result of activating this callback is as follows.

> addTaskCallback(h$evaluate)
[1] 1
[Task a] 1
[Task a] 1
> 2
[1] 2
[Task a] 2
[Task a] 2
> 3
[1] 3
[Task a] 3
[Task a] 3
Removing 1
> 4
[1] 4

4

[Task a] 4
> 5
[1] 5
[Task a] 5
> 6
[1] 6
[Task a] 6
Removing 2
>

Note that theevaluate()callback is still active. It is called at the end of each top-level task. However, it has
no handlers to call so simply returnsT. It could remove itself by returningF. Then when one adds a new function
using theadd() method, it could add itself via a call toaddTaskCallback(). The difference lies in efficiency versus
convenience and simplicity.

Since the code is written in R, it is easy to extend and/or replace the basic functionality. For example, we can add
a suspend()function which temporarily prohibits the callbacks from being invoked. This simply sets a flag toT or F.
If this flag is set toT, then theevaluate()function returns immediately and does not invoke the different callbacks.

2 Errors and Warnings

Any error that occurs when evaluating an R function registered as a callback will be caught and displayed. However,
the callback will be removed from the list of handlers and will not be called again. Also, warnings will be displayed
at the end of each callback and will be preceded by a message identifying the callback by name.

2.1 The C Interface

The C interface is similar to the R function interface. One registers a callback routine using theRf_addTaskCallback()
C routine. This expects five arguments.

1. The address (usually the name) of the routine to call after each task has been completed.

2. A reference to user-level data which is passed to the routine when it is called. This is used to parameterize the C
routine, providing additional context with which it can perform its job. For example, this might contain a handle
to a spreadsheet or a GUI object.

3. A second C routine that cleans up after the handler is removed from the list of task callbacks. This is called with
the user-level data as its only argument.

4. An optional string giving the name to use for the element in the callback list. If this is NULL, the registration
routine will create one which is the index of the position into which the callback is being added.

5. An optional integer pointer which, if specified, will contain the index into which the element has been added.

The handler routine (1) is called with5 arguments that are the C versions of the arguments passed to an R function
callback. The expression and value are given asSEXPobjects and are the actual expression and value used by R (so
don’t change them!). The success and visible valuesRboolean variables. Finally, the user-level data is specified as a
void * and is the value given when registering the callback routine.

The routine can do whatever it wants. It should catch any errors and guarantee that it returns to the caller (rather
than doing any long jumps, etc.)

At present, one cannot get at the warnings from the the top-level task as they have already been emitted by R.
We may want to change the current setup so that the handling of printing the result and warnings is done via one of
these handlers. That would allow one to easily override this and redirect output to a different rendering engine such
as a browser, e.g. Netscape/Mozilla when using R in Netscape via the SNetscape package, or a SOAP connection.
(Perhaps in 1.5.0!)

A callback function should return eitherTRUEor FALSE to indicate whether it should be kept in the callback list
or discarded, respectively.

5

3 Warning

Under no circumstances should one of the handlers add or remove entries from the list of handlers. The handlers
are intended to be autonomous actions that do not know about each other. They can remove themselves from the
list of handlers via their return value. But relying on knowing about the existence and status of other handlers is a
poor design and suggests that those handlers. Then if one needs to interact with the other, this can be done in the
higher-level handler. In the future, we may allow handlers to be evaluated as background tasks. This is a very clear
circumstance in which handlers that interact with each other is potentially disastrous.

4 Alternatives

When we move to multiple interpreter instances (i.e. different interpreters running in the same R session, either
concurrently or interleaved), we may also use the notion of a task queue. One could arrange to have every user-
specified top-level task be followed by a handler task and this would give us the same effect. The current approach
is probably simpler and guarantees the ordering. However, we will want to be cautious about introducing numerous
ways to specify task handlers and have them invoked. The potential for confusion abounds.

5 Examples

The following is a simple example of how things work. The example handlers are not particularly interesting. But
they illustrate how one can do different types of computations.

We start by defining atimes()function which will print a simple string to identify itself each time it is called. The
key point of this function is that it removes itself from the handler list after it has been called a particular number of
time. This number of calls is given in the call totimes(). Also, we can give a label that is printed by the function when
it is called to distinguish the output from the different instances of the handlers.

times <-
function(total = 3, name="a")
{

ctr <- 1
function(expr, val, ok, visible)
{

cat("[Task ", name, "] ", ctr,"\n", sep="")
ctr <<- ctr + 1
return(ctr <= total)

}
}

A second handler example isperiodic(). This is called after each top-level task, but only does something every
periodcalls. This takes an additional argument -cmd- that is the value we give when registering the callback. In this
case, we will pass an expression andperiodic()will evaluate it.

periodic <-
#
period - the number of calls between performing the action.
ctr - can be specified to start at a different point.
#
function(period = 4, ctr = 0)
{

function(topExpr, value, ok, visible, cmd) {
ctr <<- (ctr + 1)%%period
if(ctr == 0)

eval(cmd)

6

return(TRUE)
}

}

Given these two functions and the basic accessors for adding and removing entries from the task-handler list, we
can set some handlers and see how they perform. We first start by adding a collection oftimes()handlers. We given
them different expiration numbers - 3, 4, 5, and 6. Also, we identify them as a, b, c, d. For the purpose of illustration,
we ensure that none-are activated until we have registered them all. We do this by initially suspending the manager
and then adding the tasks. Then we activate it again.

> h <- taskCallbackManager()
> h$suspend()
>
> h$add(times())
[1] "1"
> h$add(times(4,"b"))
[1] "2"
> h$add(times(5,"c"))
[1] "3"
> h$add(times(6,"d"))
[1] "4"
> h$suspend(FALSE)
[Task a] 1
[Task b] 1
[Task c] 1
[Task d] 1
>

The output below the second call tosuspend()is from each of the handlers giving their counts and identifiers.
Next, we add aperiodic()handler. We specify user data that R will pass to this function when it calls it. This is an

expression that the handler function (i.e. the function returned by callingperiodic()) will evaluate every 4-th call.

> addTaskCallback(periodic(), quote(print("ok")))
[1] 5
[Task a] 2
[Task b] 2
[Task c] 2
[Task d] 2

Again, the output below the result is from the handlers. The most recently added handler in this call (the function
returned from callingperiodic()) does not generate any output. We must wait another 3 calls for it to perform its real
action.

We can continue to give regular R commands and see how the handlers work. We issue arbitrary commands and
look at the output from the handlers.

> sum(rnorm(10))
[1] 2.791676
[Task a] 3
[Task b] 3
[Task c] 3
[Task d] 3

At this point, the first timer (a) has expired having reached its maximal count of3. It has been removed from the list
and so will not appear in any subsequent output.

7

> sqrt(9)
[1] 3
[Task b] 4
[Task c] 4
[Task d] 4

At this point, handler ‘b’ has also expired and is removed.

> length(objects())
[1] 6
[Task c] 5
[Task d] 5
[1] "ok"

Handler ‘d’ has expired. Also, since this is the 4-th call, theperiodic()handler kicks in and evaluates itscmdargument.
This is the expressionprint("ok") and gives rise to the last line of the output.

> gamma(4)
[1] 6
[Task d] 6
> gamma(4)
[1] 6
> gamma(4)
[1] 6
> gamma(4)
[1] 6
[1] "ok"
>

After the first of these calls, handler ‘d’ expires. Theperiodic()handler is still active. After the 4-th of these calls, it
generates more output. And this will continue ad infinitum.

5.1 Removing Handlers

Removing handlers is quite simple. We can use either position indices or names. Names are preferred since positions
change when other callbacks are removed. The name of a callback is returned in the value given byaddTaskCallback().
It is thename()of the position value returned.

In the following output, we show how we add two callbacks, remove one, then add another, and finally remove a
callback.

> addTaskCallback(times(300), name="a")
a
1
[Task a] 1
> getTaskCallbackNames()
[1] "a"
[Task a] 2
> addTaskCallback(periodic(2), data = quote(print("periodic")), name="b")
b
2
[Task a] 3
> getTaskCallbackNames()
[1] "a" "b"
[Task a] 4
[1] "periodic"

8

> removeTaskCallback("a")
[1] TRUE
> getTaskCallbackNames()
[1] "b"
[1] "periodic"
> addTaskCallback(times(300), name="a")
a
2
[Task a] 1
> getTaskCallbackNames()
[1] "b" "a"
[1] "periodic"
[Task a] 2
> removeTaskCallback("b")
[1] TRUE
[Task a] 3
> getTaskCallbackNames()
[1] "a"
[Task a] 4
>

6 Issues

The following are some questions that arise when adding this style of a callback mechanism.

• Should these callbacks be invoked after a call toq()?

• Should these callbacks be used when reading input from a file (or connection)? This is easy to do (just add a
call toR_callToplevelCallbacks()) but we chose not to do so for the moment.

• The callbacks are not invoked during the execution of examples since they are not actually top-level tasks. This
might well be fixed when we have multiple evaluators and use a separate evaluator for examples. In that case,
we would try treat the expressions as real input rather than emulate it.

• We don’t necessarily want these callbacks run while in the browser. Do we need this to be an option? for the
session or for each handler?

• Should multiple expressions on the same input line constitute a single task?

sum(1:10); sqrt(9)

At present, they are separate tasks and we call the handlers after each expression is evaluated, i.e. once for each
of sum(1:10) andsqrt(9) twice in our example.

• An issue is how to pass the current expression (R_CurrentExpr()) to an R function registered as a handler
so that a) it appears as the user would expect and can deal with, and b) does not’ get repeatedly evaluated
causing an infinite loop? In the function handler, I have done this by wrapping it inside a call toquote()when
constructing the call to the function from within the handler. A promise may work, but didn’t seem to give the
appropriate value.

A Appendix

Here is a simple example of registering a callback via C code. One needs access toRCallbacks.hwhich is currently
available on in thesrc/include.

9

#include "Rdefines.h"
#include "RCallbacks.h"

Rboolean
basicTask(SEXP expr, SEXP value, Rboolean succeeded,

Rboolean visible, void *userData)
{

static int i = 0;
Rboolean ans = TRUE;

fprintf(stderr, "[basicTask] %s\n", (char *)userData);
i++;

if(i == 4) {
ans = FALSE;
i = 0;

}
return(ans);

}

void
addHandler()
{

char *str = strdup("[prompt] ");
Rf_addTaskCallback(basicTask, str, free,

"MyHandler", NULL);
}

10

